NONPARAMETRIC INFERENCE FOR UNBALANCED TIME SERIES DATA
نویسندگان
چکیده
منابع مشابه
Nonparametric inference for unbalanced time series data
LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE Research Online to facilitate their private study or for non-commercial research. You may not engage in furthe...
متن کاملNonparametric inference for ergodic, stationary time series
Nonparametric inference for ergodic, stationary time series. Abstract The setting is a stationary, ergodic time series. The challenge is to construct a sequence of functions, each based on only finite segments of the past, which together provide a strongly consistent estimator for the conditional probability of the next observation, given the infinite past. Ornstein gave such a construction for...
متن کاملSimultaneous Nonparametric Inference of Time Series
We consider kernel estimation of marginal densities and regression functions of stationary processes. It is shown that for a wide class of time series, with proper centering and scaling, the maximum deviations of kernel density and regression estimates are asymptotically Gumbel. Our results substantially generalize earlier ones which were obtained under independence or beta mixing assumptions. ...
متن کاملFast variational inference for nonparametric clustering of structured time-series
In this publication, we combine two Bayesian nonparametric models: the Gaussian Process (GP) and the Dirichlet Process (DP). Our innovation in the GP model is to introduce a variation on the GP prior which enables us to model structured time-series data, i.e. data containing groups where we wish to model interand intra-group variability. Our innovation in the DP model is an implementation of a ...
متن کاملAnalyzing single-molecule time series via nonparametric Bayesian inference.
The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Econometric Theory
سال: 2005
ISSN: 0266-4666,1469-4360
DOI: 10.1017/s0266466605050097